<u>Devoir de Synthèse</u> 2nd Trimestre

3^e Maths – Mars 2009 Durée 3h00

Exercice n°1: (6 points)

Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v})

Soit A, B, C les points d'affixes respectives $z_A = 1 - i$; $z_B = 2$ et $z_C = 1 + i$

- 1) a) Représentation les points A, B, C.
 - b) Montrer que OABC est un carré.
- 2) a) Ecrire sous forme trigonométrique les nombres complexes z_A et z_C.
 - b) Déterminer et construire dans le même graphique l'ensemble $\xi = \{M(z) \text{ tels que Arg } z = \frac{\pi}{4} [2\pi] \}$
 - c) Soit t un nombre complexe dont la partie réelle est égale à 3 et une mesure de son argument est $\frac{\pi}{4}$. Ecrire la forme algébrique de t.
- 3) Soit le nombre complexe $w = (1 + i)^n + (1 i)^n$ où $n \in IN$ a) Montrer que w est réel.
 - b) Donner la forme algébrique de w dans le cas où n = 3.

Exercice n° 2: (5 points)

Dans un plan orienté, on considère un triangle ABC rectangle en A et tel que $(\overrightarrow{BC}, \overrightarrow{BA}) = \frac{\pi}{3} [2\pi]$

On désigne par O le milieu de [BC] et par (ζ) le cercle circonscrit au triangle ABC.

- 1) Déterminer et construire l'ensemble $\Gamma = \{M \in P \text{ tel que}\left(\overrightarrow{MA}, \overrightarrow{MC}\right) = \frac{2\pi}{3} [2\pi] \}$
- 2) Soit R la rotation d'angle $\frac{2\pi}{3}$ et telle que R (A) = C. Déterminer et construire le point I centre de R.
- 3) On pose C' = R(C). Montrer que la droite (CC') est la tangente en C au cercle (ζ)
- 4) On pose B' = R(B)
 - a) Montrer que $\left(\overline{CB'}, \overline{CC'}\right) = \frac{\pi}{2} [2\pi]$
 - b) En déduire que les points C, B et B' sont alignés.

Exercice n° 3: (3 points)

Dans le plan orienté, on considère un triangle équilatéral ABC, de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{3} [2\pi]$

On se propose de déterminer toutes les rotations qui laissent globalement invariant le triangle ABC. Soit R, la rotation qui laisse globalement invariant le triangle ABC et soit $\mathscr C$ le cercle circonscrit à ABC.

- a) Déterminer R(\mathscr{C}). En déduire que O est le centre de R.
- b) Montrer que l'image d'un hauteur du triangle ABC est un hauteur de ABC.

c) Identifier toutes les rotations qui laissent globalement invariant le triangle ABC.

Exercice n° 4: (6 points)

La courbe (ζ_f) représente une fonction f définie et dérivable sur [0 ; 4] dans un repère orthonormé.(voir la figure) .

On note f' la fonction dérivée de f.

La droite (T_A) est la tangente au point A d'abscisse 0.

La courbe admet une tangente parallèle à l'axe des abscisses au point d'abscisse 1.

- 1) Par une lecture graphique :
 - a) Donner f (0), f (1), f' (0) et f' (1).
 - b) Donner le tableau des variations de f.
- 2) On considère la fonction g inverse de f, c'est-à-dire $g = \frac{1}{f}$. On note g' la fonction dérivée de g.
 - a) Déterminer g (0), g (1) et g (3).
 - b) Déterminer les valeurs g' (0) et g' (1).
 - c) Déterminer le sens de variation de g. Justifier.
 - d) Construire sur la figure la courbe représentative de g.

|--|

